

GMBU

Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e. V.

Mitglied der

Die Gesellschaft

Die GMBU e. V. ist eine gemeinnützige Forschungseinrichtung

mit drei eigenständigen Fachsektionen.

Gegründet 1992 hat sie heute einen festen Platz in der Industrieforschung und Innovation Mitteldeutschlands.

Umweltbiotechnologie

Halle (Saale) – Sachsen-Anhalt

Photonik und Sensorik

Jena – Thüringen

Funktionelle Schichten

Dresden – Sachsen

Ein wichtiges Aufgabengebiet ist die Aus- und Weiterbildung von Schülern und Studenten, um junge Menschen an die Lösung (wirtschafts-)wissenschaftlicher Probleme heranzuführen und Einblicke in den alltäglichen Ablauf in einem Unternehmen zu geben.

Die Fachsektionen

Umweltbiotechnologie Sachsen-Anhalt

- Bioverfahrenstechnik und Mikrobiologie
- Umwelt- und Bioprozessanalytik
- Anwendung von Ultraschallund Mikrowellentechnologien
- Entwicklung von additiven Fertigungsverfahren
- akustische Verfahren für Maschinendiagnostik und Materialprüfung

Photonik und Sensorik Thüringen

- optische Spektroskopie für medizinische Anwendungen
- Fluoreszenzdetektion und Spectral Imaging für Biound Gentechnologie
- optische und optochemische Sensoren für Umwelt- und Prozessüberwachung
- UV-Strahler und Photoprozesse für Umwelt, Technik und Medizin

Funktionelle Schichten Sachsen

- Nanosol-Beschichtungen zur Funktionalisierung von Textilien, Papier und Medizin-produkten
- Sol-Gel-Immobilisierung von bioaktiven Stoffen (Biocere)
- analytische Dienstleistungen, Muster und Fachberatung zu Beschichtungsproblemen

Test- und Untersuchungsverfahren

aerobe biologische Verfahren

- mikrobiologische Testverfahren (Laborprüfverfahren, mobiles Testsystem)
- DIN-Laborkläranlage
- Laborreaktoren zur Anzucht von Starterkulturen,
 Konfektionierung von Starterkulturen
 (z. B. Immobilisate, verkapselte Kulturen)
- Reaktoren zur Durchführung von Untersuchungen (Festbettreaktoren, Air-Lift-Reaktoren)
- Screeningsysteme f
 ür phototrophe Organismen

(katalytische) UV-Oxidation

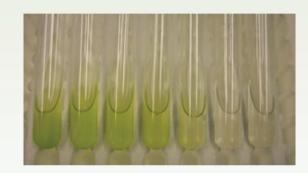
- Fixierung des Katalysators (z. B. Titandioxid)
- Auswahl von Oxidationsmitteln (z. B. H₂O₂, Ozon)
- Reaktoren zur Durchführung von Untersuchungen (Labor- und kleintechnische Anlagen)

anaerobe biologische Verfahren

- Gärtestsystem mit Online-Gasanalytik (GärOnA)
- Biogasanalysentechnik (Mobil-GC, H₂S-Messtechnik)
- Laborreaktoren zur Anzucht von Starterkulturen, Konfektionierung von Starterkulturen
 (z. B. Immobilisate schadstoffadaptierter Mikroorganismen)
- funktionalisierte Getreideextrudate
 (z. B. zur Bindung von H₂S, zur Schaumbekämpfung)

weitere Techniken

- Ultraschall
- Mikrowellentechnik


Standardverfahren zur Bewertung der antimikrobiellen Aktivität von Einzelkomponenten

1 Bakterizide Wirkung

- → Leuchtbakterientest (DIN EN ISO 11348-2 L52)
- → Pseudomonas-Zellvermehrungshemmtest (DIN EN ISO 10712 L8)
- Dehydrogenasen-Aktivitätstest (L3)

2 Algizide Wirkung

Süßwasseralgen-Wachstumshemmtest (DIN EN ISO 8692 L9)
 zur Bestimmung der Wachstumshemmung von Chlorella vulgaris

3 Fungizide Wirkung

→ Hemmtest (eigene Methode) zur Ermittlung der Wachstumsinhibierung von Aspergillus terreus

4 Migrationsversuche zur Wirkstoffdiffusion

- Untersuchung der Diffusion ausgewählter Biozide aus Masterbatches und beschichteten Probekörpern
- Bewertung der bioziden Wirkung von Eluaten

Bewertung der antimikrobiellen Wirksamkeit von Verbundmaterialoberflächen Auslagerungs- und Bewitterungsversuche

Außenbewitterung

Tauchversuchsstand

PiA – Petrischale mit integriertem Ausstrichsystem

Gesamtkeime im Wasser selbst bestimmen mit dem Wasser-Selbst-Test

- mikrobiologische Untersuchungen zum Keimstatus in der Umwelt sowie in Wohnbereichen zunehmend gefragt
- Privatpersonen möchten Kenntnis über Keimbelastung in Trink-, Brunnen- oder Teichwasser erlangen
- Kultivierungssystem nach dem Vorbild der klassischen Petrischale → einfache Anwendung durch den Laien
- Schnelltest-Kit mit sicherer Anwendung durch spezielles Probenaufgabeprinzip und Verriegelungssystem
- Projekt im Rahmen des Netzwerks "Rapid Prototyping" gemeinsam mit der Hochschule Merseburg sowie den Unternehmen Gajewi Bautenschutz GmbH und Großkopf Kunststofftechnik

Sedimentationsmessung – System zur Messung und Steuerung relevanter Parameter der optimierten biologischen Schlammentwässerung auf Kläranlagen

Ziel:


Kontrolle der Schlammreifung durch (semi-)automatisierte Messzyklen an repräsentativen Teilmengen des Konditionierungsreaktors

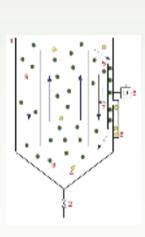
Messprinzip:

- > optische Sender-/Empfänger-Baugruppe an transparentem Sedimentationsrohr
- > orts- und zeitaufgelöste Messung
- Messung der Transmission an jedem Messpunkt
- elektronische Datenerfassung und -auswertung

Vorteil: deutlich erweiterte Aussagekraft gegenüber der Norm

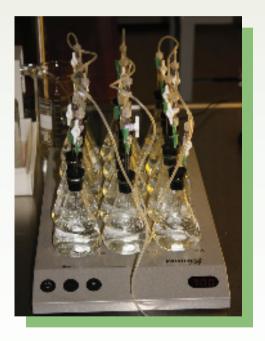
- > 30-min-Absetzwert
- Schlammvolumenindex nach Norm
- mittlere Sedimentationsgeschwindigkeit
- Sedimentationsgeschwindigkeit zum Zeitpunkt t in Höhe y
- Resttrübung in Höhe y
- Phasengrenze zu beliebiger Zeit t
- Absetz-Dynamik, so z. B. Absinken oder wieder Auftreiben (durch Gasbildung) von großen Einzelflocken, u.v.a.m.

Verkapselung von Mikroalgen in Alginatstrukturen


- Mikroalgen der Spezies *Chlorella vulgaris* wurden unter Erhaltung ihrer Aktivität in 3 mm großen sphärischen Alginatvollkapseln immobilisiert
- geplant: Hohlkugeln als Minireaktoren
- Einsatzoption als Inokulierungsbasis
- Kapseln haben Schutzfunktion gegen Inhibierungen

BioAir Air-Lift-Schlaufenreaktor mit Beleuchtungssystem

- Tauchrohr zur Beleuchtung von innen und zusätzliche Beleuchtung über den Außenmantel
- pneumatische Durchmischung durch den zu reinigenden Gasstrom
- Installation als freistehende Säule oder an der Wand
- > transparenter Zylinder mit LED-Beleuchtung
- > optisch ansprechend



Photobioreaktoren

Kulturkolbenversuchsstand

- begaste Kulturkolben für Screeningversuche
- variable CO₂-Begasung
 über Gasmischstation

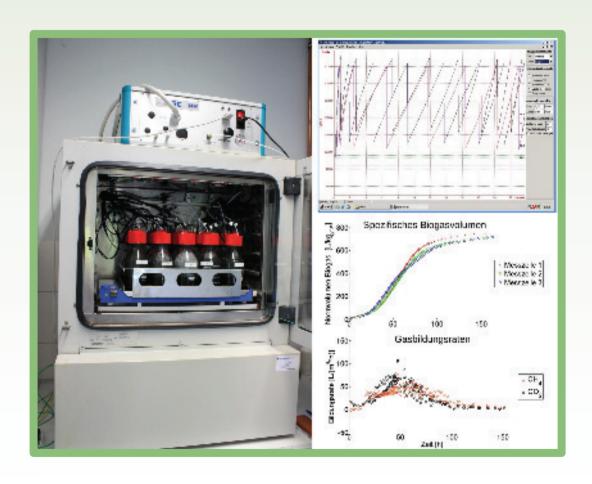
3l-PBR-System

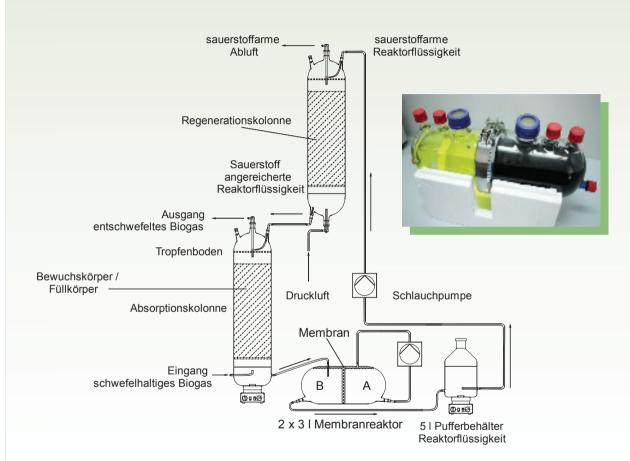
- kontrollierte Mikroalgenanzucht im Labormaßstab (autoklavierbar)
- geschlossenes Röhrensystem
- Lichtmodul dimm- u. regelbar: (5 bis 580 µmol m⁻² s⁻¹)
- erzielbare Biomassebildungsraten Grünalgen: 1,3 g_{TS} l⁻¹ d⁻¹

30l-PBR-System

- kleintechnisches PBR-System für erste Maßstabsübertragung
- geschlossenes Röhrensystem
- Biomassekonzentrationenbis 0,6 % TS oder separiert5 % TS

PhytoLux – Mehrplatzkultivierungssystem für phototrophe Mikroorganismen




- Entwicklung eines weitgehend automatisierten Mehrplatz-Kultivierungssystems für phototrophe Mikroorganismen mit folgender Ausrüstung:
 - > 16 Kulturgefäße (4x4) á 500 ml
 - individuell gesteuerte Beleuchtung mit LED-Modulen bis max. 1000 µmol/m²s
 - 8 verschiedene diskrete Wellenlängen auf jedem LED-Modul, einzeln ansteuerbar
 - individuelle Temperierung mittels Peltierelementen
 - individuelle Begasung
 über Gasmischstation und Multiventilinsel
 - Trübungsmessung an jedem Gefäß
 - optische Sonden zur Produktbildungsvermessung

GärOnA – Druckgesteuertes Gärtestsystem mit Online-Biogas-Analyse

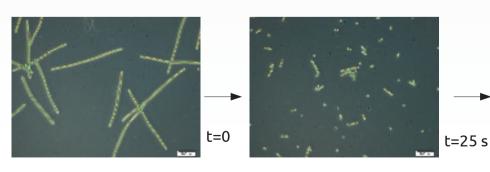
- automatisiertes Mehrplatz-Gärtestsystem zur Ermittlung des Biogaspotentials nach VDI 4630 mit online angebundenem Gaschromatographen zur Analyse der Biogaszusammensetzung
- Prototyp mit:
 - 15 Gärgefäßen (5x3) mit eigens entwickelten Druckmessköpfen (GL-Anschluss)
 - trockener Inkubation im Bereich von 5 - 60°C
 - automatischer Druckerfassung und entgasung über Ventilinsel
 - → automatischer Biogasvermessung mittels GC bei Entgasungsvorgängen
 - Ermittlung von Normvolumen, CH₄-/CO₂-Konzentrationen, Komponentenbildungsraten

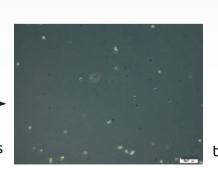
H₂S-Entfernung

- Bewertung des Verfahrenskonzeptes hinsichtlich H₂S-Fracht und Reingaskonzentration
- kleintechnische Versuchsanlage in unsteriler Betriebsweise mit integriertem Membranreaktor zur Nährstoffversorgung und Vermeidung der Sulfatanreicherung
- Gaseingangskonz.: 1000-3000 mg/m³
 Reingaskonz.: < 30 mg H₂S/m³
- verschiedene Membranen getestet
- Bau und Erprobung einer 2-stufigen Anlage im 2 m³-Maßstab mit Düsensystem zur Sauerstoffanreicherung (Ventury GmbH)

Funktionsextrudate auf der Basis nachwachsender Rohstoffe

- stabiler Einsatz in wässriger Phase durch Teilhydrophobierung
- biologisch abbaubar
- Funktionalisierung mit
 - Enzymen
 - Mineralien
 - lebenden Mikroorganismen
 - Dünger
 - Spurenelementen
 - Adsorbentien
 - Antischaummittel etc.
- Einsatzgebiete:
 - Land- und Forstwirtschaft
 - Gartenbau
 - Abwasserreinigungsanlagen
 - Biogasanlagen
 - Bodensanierung und Rekultivierung




Weitere Techniken

Einsatz von Leistungsultraschall

- Nutzung von definiertem Ultraschalleintrag zur Zelldesintegration, Zellvereinzelung und Extraktion von Wertstoffen aus Mikroorganismen (z. B. Mikroalgen)
- Sonotrodentechnik, Durchflusszellen
- Leistungsstufen: 200 1000 W
- Kopplung an Photobioreaktoren
- steuerbare Amplituden, Pulssequenzen

Aufschluss von Cyanobakterien (*Arthrospira*)

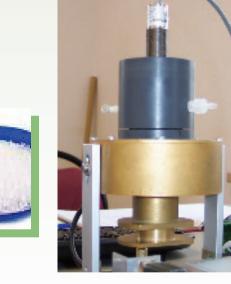
t=100 s

Weitere Techniken

Miniaturisierter Mikrowellenofen

als Add-on-Gerät für Analysengeräte zur quantitativen Wasserbestimmung in Lebensmitteln, Biomaterialien, pharmazeutischen Produkten, Feinchemikalien und polymeren Materialien

Gerätetechnische Neuerungen:


- Umbau der Probenhalterung
- Festeinbau des Temperatursensors
- Drehung des Resonators

Vorteile:

- bessere Ausfüllung des Messflecks durch vertikale Fokussierung des Temperatursensors
- sichere Temperaturmessung
- Verbesserung des Probenhandlings (Probenzuführung, Reinigung des Proberöhrchens)
- stabilere Grundlinie im KF
- Minimierung des Eindringens von Fremdfeuchte

Additive Fertigung

Materialmodifizierung

- funktionalisierte und modifizierte Materialien für technisch anspruchsvolle Bauteile mit speziellen Anwendungseigenschaften
- mechanische, akustische, optische, mikrobiologische, elektrische, magnetische, thermische, flammgeschützte u. a.
 Materialausrüstungen
- Makro-, Mikro- und Nano-Modifizierung

Oberflächenmodifizierung

Oberflächenfunktionalisierung und -behandlung additiv gefertigter Bauteile (Glätten, Beschichten, Veredeln, Verschleißschutzausrüstung, usw.)

Verfahrensentwicklung

- Qualitätssicherung (Prozessüberwachung)
- material- und anwendungsspezifische Prozessoptimierung
- Verarbeitung von Spezialwerkstoffen (Naturstoffe, Fasern, Hochtemperatur, spezielle Funktionalitäten, ...)
- Verfahrenskombination und -variation für funktionelle Bauteile

Prüfung und Anwendung

- Qualitätssicherung (zerstörungsfreie Prüfung)
- anwendungsorientierte Bewertung additiv gefertigter Bauteile bzw. Prüfkörper (mechanisch, thermisch, akustisch, elektrisch, tribologisch, optisch, topografisch, Alterung, Medienbeständigkeit usw.)

Anwendungsbeispiele

- Prototypen
- > Anschauungsmodelle
- **Funktionsmuster**
- Einzelanfertigungen
- → schnelle Erprobung
- → kurze Entwicklungszyklen
- → kurzfristige und flexible Designanpassung

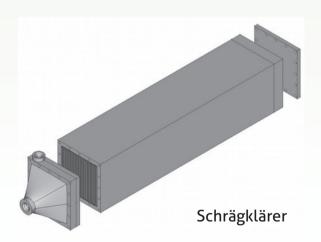
Gerätegehäuse

- Kleinserien, Markteinführung
- personalisierte Produkte
- spezialisierte High-End-Produkte
- funktionelle Prototypen
- → günstige Fertigung für Vorserientests
- → flexible Anpassung an Marktanforderungen
- → schnellere Markteinführung
- → geringe Investitionskosten und Risiken

Staubschutzrohr

Anwendungsbeispiele

- Montagevorrichtungen
- **Halterungen**
- Versuchsaufbauten
- > Messvorrichtungen
- → kurzfristige Realisierung
- → Anpassung an aktuelle Erfordernisse
- → hochwertige, präzise Messvorrichtungen



Beispielanwendungen

- > schwer erhältliche Ersatzteile
- Adapter für eingestellte/geänderte Produktreihen
- → Vermeidung vorzeitiger Obsoleszenz
- → Einsparung durch verlängerte Nutzungsdauer
- → Reduzierung des Ressourcen- und Energieverbrauchs

- Baugruppen aus einem Stück
- komplizierte / innenliegende Geometrien
- Funktionsintegration
- > automatisierte Fertigung
- Leichtbau
- → geringere Fehleranfälligkeit
- → optimierte Strukturen
- → effizienterer Materialeinsatz
- → höhere Festigkeit / Gewicht

